Top Quark Physics at DØ in Run II with 500 pb⁻¹ of Data

Ann Heinson University of California, Riverside

DØ Collaboration Workshop

University of Washington, Seattle 27th June – 2nd July 1999

Top Physics Program

Production

Top pair cross section

- Single top cross sections
- Couplings: gtt Wtb
- o Spin correlations
- o *tt* invariant mass spectrum

Decay

Mass m_{top}

- lacksquare Width Γ_{top}
- ullet CKM matrix element $|V_{tb}|$
- Gluon radiation
- W helicities
- Branching fractions
- \bullet p_T spectra
- Charge
- o Rare decays
- = new for Run II
- o = very much improved for Run II

We think we know about m_{top} and σ , but what about ...

... All the Other Measurements

Use the reconstructed $t\bar{t}$ and single top with $t \rightarrow Wb$ for:

From σ , m_{tt} set limits on anomalous couplings gtt, Wtb

$$Z', V_8, \eta_T \rightarrow t\bar{t}$$
; $\tilde{g} \rightarrow t\tilde{t}$; $g \rightarrow \tilde{t}\bar{\tilde{t}}$

 $\tilde{g} \rightarrow t\tilde{t}$ Like sign dileptons?

Tag rate suppressed?
$$t \rightarrow Ws, Wd \mid V_{tb} \mid$$
 etc.

 $\tilde{t} \rightarrow b l \tilde{v}$ Leptonic rate enhanced?

 $t \to \tilde{t} \chi^0$, $\tilde{t} \to c \chi^0$ Leptonic rate suppressed?

Kinematic distribs need $m_{"v"} \ t \to \tilde{t} \chi^0, \ \tilde{t} \to b \chi^+$; $\tilde{t} \to b \chi^+$

 $t \to \tilde{b} \chi^+$, $\tilde{b} \to b \chi^0$

Angular distributions production and decay helicities

Extra particles in final state:

 g, γ, b, I (one or more) SM radiative decays, plus others

Reconstruct tt in different decay modes:

Tau rate enhanced? $t \rightarrow H^+ b$, $H^+ \rightarrow \tau v$

 $t \to \tilde{t} \chi^0$, $\tilde{t} \to \tau X$ (high $\tan \beta$)

 $t
ightarrow \pi_{ au}^+ b \; ; \;\; t
ightarrow ilde{t} ilde{g} \; ; \;\; t
ightarrow ilde{t} ilde{G}$ Odd stuff

 $t
ightarrow ilde{ au}^+ b, \; ilde{b}_{ au} \; \; ext{(R parity violating)}$

 $t \rightarrow gc, gu, \gamma c, \gamma u, Zc, Zu$ (FCNC)

 $t \rightarrow h^0 c, h^0 u, \pi_T^0 c, \pi_T^0 u$ (FCNC)

Different modes of single top production:

 $g, Z, \gamma \rightarrow tc, tu; q \rightarrow Zt, \gamma t$ More odd stuff

Requires CAREFUL COORDINATION between Top Group and New Phenomena Group so as not to get missed.

Changes from Run I – Effect on Top

Detector Improvements

Electrons measure p_T

fewer fakes

use for b tagging

Muons better p_{τ}

lower minimum p_T for tags

better η coverage

better triggers

Jets charge for jet ID

b tagging with secondary vertices

b trigger with STT

Accelerator Improvements

11% higher energy

40% increase in $t\bar{t}$ and single top cross sections

5x higher integrated luminosity

Analysis Improvements

~25x higher statistics
better MC models
better parton distribution function sets
better analysis tools
more ways to control systematic errors
more experience

Data Sets

1. $e \text{ or } \mu + \geq 1 \text{ central jet}$

- + $\not\!\!E_T$ for I + jets/notag background ($t\bar{t}$ and single top)
- + $\not\!\!E_T$ + \geq 2 jets for single top
- + 'e' or ' μ ' + \geq 2 jets for lepton ID prob (single top)
- + 'e' or ' μ ' + \geq 3 jets for lepton ID prob ($t\bar{t}$)
- $+ e \text{ or } \mu + \not\!\!\!E_T + \geq 2 \text{ jets } \text{ for } t\bar{t} \rightarrow dileptons, m_{top}$
- (μ) + low $\not\!\!E_T$ + \geq 2 jets for fake μ backgd ($t\bar{t}$ and single top)
 - + $\not\!\!E_T$ + ≥ 3 jets for $t\bar{t} \rightarrow lepton + jets / tag$
 - + $\not\!\!E_{T}$ + \geq 4 jets for $t\bar{t} \rightarrow lepton + jets / notag, <math>m_{top}$

2. \geq 6 jets (STT or prescaled?)

for $t\bar{t} \rightarrow alljets$ Xsec and m_{top}

3. b-tag + \geq 2 jets (STT)

 $Z \rightarrow b\overline{b}$ for jet energy scale calibration

- + ≥ 3 jets to measure secondary vertex tag prob, fake prob (if *b*-tag is in trigger)
- $+ \ge 4$ jets for single top \rightarrow alljets

4. \geq 2 jets (\geq 1 central jet; prescaled)

for $b\bar{b}$ continuum subtraction in energy scale calibration

- $+ \ge 3$ jets fake electron background in $t\bar{t}$ and single top
 - and measure lepton tag rate functions
 - and measure secondary vertex tag prob, fake prob (if *b*-tag not in trigger)

5. Various special sets for rare decay searches

Signal Yields in 500 pb⁻¹

Reconstructed Top Events			
Exclusive Yields	Run I	Run IIa	500 pb ⁻¹
$(m_{top} = 175 \text{ GeV})$	10% tag	45% tag	65% tag
$t\bar{t} \rightarrow II + \geq 2$ jets	5	39	39
$t\bar{t} \rightarrow l+=3$ jets/ =1 tag ———		17	16
$t\bar{t} \rightarrow l+=3$ jets/ = 2 tags ——		9	19
$t\bar{t} \rightarrow l+ \geq 4$ jets / notags	10	178	71
$t\bar{t} \rightarrow l+ \geq 4 \ jets/ = 1 \ tag$	9	145	133
$t\bar{t} \rightarrow l+ \geq 4 \ jets/ = 2 \ tags$		70	148
$t\bar{t} \rightarrow \geq 6$ jets/ =1 tag	14	252	232
$t\bar{t} \rightarrow \geq 6 \text{ jets/} = 2 \text{ tags}$	2	124	260
Total <i>tt</i> Events	40	834	918
$t\overline{b} + \overline{t}b \rightarrow l + \geq 2$ jets / notags	~0.8	7	3
$t\overline{b} + \overline{t}b \rightarrow l + \ge 2$ jets/ =1 tag	~0.2	11	10
$t\overline{b} + \overline{t}b \rightarrow l + \ge 2$ jets/ = 2 tags		5	10
$t\overline{b} + \overline{t}b \rightarrow \geq 4 \text{ jets/} = 1 \text{ tag}$		29	27
$t\overline{b} + \overline{t}b \rightarrow \geq 4 \text{ jets/} = 2 \text{ tags}$		12	25
Total s-channel single top	~1	64	75
$tq\overline{b} + t\overline{q}b \rightarrow l + \geq 2$ jets / notags	~2.0	17	7
$tq\overline{b} + t\overline{q}b \rightarrow l + \ge 2$ jets/ =1 tag	~0.3	28	26
$tq\overline{b} + t\overline{q}b \rightarrow l + \geq 2jets / = 2 tags$		11	23
$tq\overline{b} + t\overline{q}b \rightarrow \geq 4$ jets/ =1 tag		72	66
$tq\overline{b} + t\overline{q}b \rightarrow \geq 4 \text{ jets/} = 2 \text{ tags}$		29	61
Total t-channel single top	~2.3	157	183

How to Improve the Analyses

Reduce the Errors

More statistics ... the following errors will go down by $1/\sqrt{N}$:

Electron ID efficiency 5 % (CC), 7 % (EC)
Fake electron probability 10 % (CC), 8 % (EC)
Muon ID efficiency 10 % (CF), 3 % (EF)
Fake muon probability 5 % (CF), 30 % (EF)
Tag muon ID efficiency 5 % (CF), 3 % (EF)

The following errors need more work to make them go down:

Integrated luminosity 5%Tag rate functions 8%Modeling tagging muons 10%PDF model of proton 1-10%Jet energy scale 1-10%Multiple interactions 3-10%Modeling jets 5-14%

Increase the Efficiencies / Reduce the Fake Rates

Electron ID strongly dependent on jet multiplicity

61 % (CC), 54 % (EC), for ≥2 jet events

Fake e probability 0.01 % (CC), 0.05 % (EC)

Muon ID ~ 45 %

Fake μ probability 7 – 16 % (CF), 45 – 63 % (EF)

Jet ID kT jets for high efficiency at low E_T ?

b-tag efficiency 10 % / jet —> 40 % – 70 % / jet ?

Fake tag prob ~ 0.4 % / jet

Improve the MC Models

Jet Modeling

tt Signal

HERWIG 5.7 and 5.9 used in Run I

Version 5.9 had a bug in the *b* parton showering —> Too much gluon radiation at large angles. Fixed in 6.0

Version 6.1 replaces the parton showering algorithms in top decay (FSR) with NLO matrix element calculations

—> Energy radiated ~same, angular distribution different

NLO matrix elements will be in top production (ISR) soon

Single Top Signal

Get NLO generator from Laenen (extension of DYTAG)

W+Jets Background

CompHEP could replace VECBOS

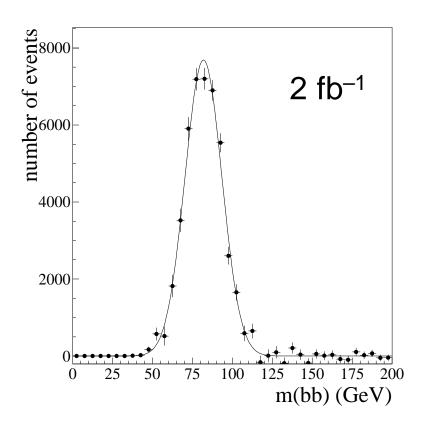
—> Quark masses are included (changes pT for *b* jets)

b-Decay Modeling

Get the latest CLEO model of b and c decays for HERWIG

PDFs

Update from CTEQ3M to CTEQ6M and/or MRS98


Improve the Jet Energy Scale Calibration

Narain and Heintz DØ Note 3604

Use STT with >= 2 jet events, at 20% efficiency Able to reconstruct $Z \rightarrow b\overline{b}$ peak above 2 jet continuum

 p_T balancing with dijet and $\gamma + jet$ events limited to ~1.5% $Z \rightarrow b\bar{b}$ will reduce this to ~0.3% (Full Run II)

In 500 pb⁻¹, reconstruct ~10,000 $Z \rightarrow b\overline{b}$ on a ~140,000 $g \rightarrow b\overline{b}$ continuum

Try to do this with lepton-tagged jets too?

Might need to if no STT. Calibrate lepton-correction to jet

Improve b-Tagging of Jets

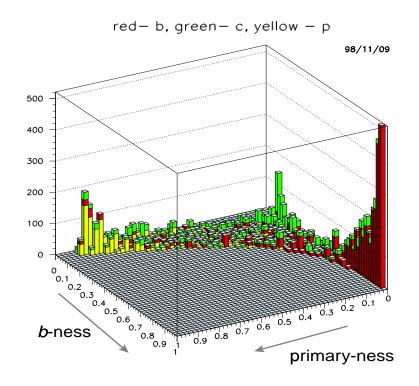
Bookkeeping Problem

Run I Separate analyses for untagged and tagged events

in cross section measurement

Separate treatment for untagged, single-tagged,

and double-tagged events in mass measurement


Run II Each jet can have:

(SMT) (e) (
$$\mu$$
)
(SMT+e) (SMT+ μ) (e+ μ) (e+e?) (μ + μ)
(SMT+e+ μ) (SMT+e+e?) (SMT+ μ + μ)

Up to two combs / event — how many analyses?

Losing Information

If the SMT, e and μ tags are just yes/no information, then much is lost – must combine all available information in NN CDF have developed a NN with 8 inputs and 3 outputs (b, c, p)

(D. Amidei, R. Demina D. Wolinski)

We must do this too! Optimized for DØ, better!

Summary of Key Issues

- ~ 900 $t\bar{t}$ pair events S:B 5:1 (II) 3:1 (I+jets) ?
- ~ 240 single top events S:B 1:4?

Yields are critically dependent on:

- keeping trigger efficiencies at Run I levels
- improving e ID efficiency in high occupancy environment
- improving μ ID efficiency
- using the STT for single top -> alljets

Signal:Background will be determined by:

- lowering fake rates for e, μ, b-tag
- getting high b-tagging efficiency

Highest quality measurements depend on:

- improving the jet energy scale calibration
- using better MC tools for modeling
- using neural networks wherever possible

Summary of Top Physics with 500 pb⁻¹

We should publish papers (PRL and/or PRD) of the following measurements:

Major:

- 1. top quark mass
- 2. $t\bar{t}$ pair production cross section
- 3. s-channel and t-channel single top cross sections

Production:

- 4. anomalous coupling limits (from cross sections)
- 5. gluon radiation studies
- 6. high mass resonance search in m_{tt}
- 7. spin correlations

Decay:

- 8. Whelicities
- 9. branching fractions
- 10. p_{τ} spectra (perhaps with 5.)
- 11.-15. rare searches (several)

Combined:

16. $|V_{tb}|$ and top width from single top cross section and $t\bar{t}$ decay branching fractions